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Introduction

Workers are commonly exposed to multiple factors and substances that are hazardous to 

health. For instance, in 2005, approximately 30% of the European workers reported being 

exposed to noise during at least a quarter of the time spent in their work environment, 11% 

reported inhaling vapors such as solvents and thinners; 19% reported exposure to smoke, 

fumes, powder, or dust; and 14% reported handling chemical substances.1 Although 

occupational noise exposure has long been recognized in the United States and in Europe as 

the most deleterious factor to hearing2,3 the impact of chemical-induced hearing loss on 

workers should not be underestimated.4 A cursory survey of the literature for the last three 

decades reveals that concern about the effects of chemicals on hearing has grown steadily. 

The proliferation of work-related substances and medicinal drugs (mostly antitumor drugs 

and aminoglycosides) has been accompanied by an equivalent increase in the number of 

scientific publications on the hearing risks encountered by chemical-exposed persons. Cause 

for concern is even greater when the synergistic risks of co-exposures are considered. For 

example, physiological factors may increase the severity of a chemical’s effect on hearing. 

Today, robust evidence also confirms that the effects of ototoxic substances on ear function 

can be aggravated by noise, which remains a well-recognized cause of hearing impairment. 

In an expert forecast supervised by the European Agency for Safety and Health at Work5 

(EU-OSHA, 2009), a “combined exposure to noise and ototoxic substances” was rated as an 

emerging risk.

Industrial ototoxic chemicals have predominantly been assessed through animal studies, 

which are supported by data from epidemiologic studies on human workers from various 

industries. Bergström and Nyström (1986) published the seminal results of a 20-year 

longitudinal study performed with 319 Swedish employees from different industrial 

sectors.2 This study began in 1958 and involved testing workers’ hearing regularly. Its 

findings showed that a large proportion (23%) of the employees working in a chemical 

division suffered from hearing impairment, despite their exposure to lower noise levels than 

other divisions. Based on this type of evidence, researchers have long hypothesized that 

industrial solvents pose an additive risk to hearing. Scientific findings in animals are 

generally considered qualitatively relevant to human health, provided no substantial 

difference in biological response (e.g. metabolism) exists between test animals and humans. 

Despite these findings, current research is limited by the following:
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1. a lack of detailed exposure histories;

2. the presence of confounding factors (ototoxic drugs, tobacco, alcohol consumption, 

aging, and exposures outside the workplace);

3. and the fact that chemical exposure scenarios used in experimental investigations 

are qualitatively different from real-world occupational settings.

In this extensive, but not exhaustive, review of the literature, the authors hope to share the 

evidence indicating that noise is not the only source of work-related hearing damage and to 

draw greater attention to the matter of chemically induced hearing loss. The present 

publication intends to provide occupational physicians and other health professionals with a 

clear picture of what is known about how chemical substances may affect hearing ability in 

the general population, and more specifically, in workers. The article describes the 

following:

1. chemicals that can be noxious to the inner ear;

2. work areas where exposure to ototoxic substances are likely;

3. and the basic features of the physiological mechanisms leading to hearing 

impairment.

This article also addresses the limitations of pure-tone air-conduction audiometry when 

assessing chemical-induced hearing loss and proposes a more complete approach to evaluate 

the auditory neurosensory hearing receptor and the neural pathways involved in the stapedial 

reflex. With the proposed battery of tests, physicians will be able to evaluate both 

ototoxicity and neurotoxicity. Throughout this manuscript, emphasis is placed on the need 

for stronger links between primary care and occupational physicians. This could help 

preserve patients’ hearing status as a part of their overall health.

Ototoxic drugs

It is well documented that some medicinal drugs, such as powerful antibiotics and anti-

neoplastic drugs used against life-threatening diseases can cause auditory and/or vestibular 

dysfunction in patients. Functional damage can include permanent hearing loss and tinnitus. 

In several countries, administration of these drugs is monitored, and guidelines are available 

online (AAA, 2009, available online at http://www.audiology.org/resources/

documentlibrary/Pages/OtotoxicityMonitoring.aspx). A brief review of these substances is 

presented in the section Which substances can be considered ototoxic?, but first we review 

some of the terms used to describe how they affect hearing and their definitions.

Definitions

Noise is a physical factor that causes mostly mechanical and metabolic damage to the 

peripheral auditory receptor, the cochlea, and more rarely, to the auditory neural 

pathways.6–8 In contrast, chemicals in the bloodstream go through either the blood-labyrinth 

barrier into the cochlea or the blood–brain barrier to reach the eighth cranial nerve and the 

central nervous system.9–13 As a result, chemical-induced hearing loss can be the result of 

effects on several sites within the hearing system. Ototoxic chemicals may affect the 
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structures and/or the function of the inner ear (auditory and vestibular apparatus) and the 

connected neural pathways. From a general point of view, both cochleotoxicants and 

vestibulotoxicants can be defined as ototoxicants.

A cochleotoxicant can affect different cochlear structures, including the auditory sensory 

cells (“hair cells”), the fluid-producing cell layer on the outer wall of the cochlear duct 

(“stria vascularis”), and the spiral ganglion cells. In most cases, cochlear hair cells are the 

primary targets of cochleotoxicants (Figs. 1–5).

Which substances can be considered ototoxic?

This article only reviews chemicals for which the strongest evidence of ototoxicity exists. A 

substance was included if human data are available, or if two well-documented animal 

studies reported clear and reliable findings in a coherent manner. If supporting human data 

were lacking, species-specific features should not contradict extrapolation of animal findings 

to humans. For the sake of clarity, data on potentially ototoxic substances are not reported in 

the present article.

Aminoglycosides—The aminoglycosides, such as streptomycin, kanamycin, neomycin, 

gentamicin, tobramycin, amikacin, and netilmicin are commonly used to treat gram-negative 

bacterial infections. Unfortunately, the clinical benefits of these agents can be outweighed 

by their toxicity, which includes cochlear damage. The incidence of hearing loss ranges 

from a few percent to up to 33% of the aminoglycoside-treated patients. Aminoglycoside-

induced hearing loss spreads from high to low frequencies depending on the duration of 

treatment and the dose. After systemic administration, the antibiotics rapidly go through the 

blood–labyrinth barrier at the level of the stria vascularis to penetrate the cochlea. The drug 

reaches the perilymph and thereby the outer hair cells, which are particularly sensitive to 

antibiotics.14–17 They can remain in the cochlea for several months after discontinuing the 

treatment.18,19 Because of this long clearance time from the inner-ear liquids, occupational 

physicians must take aminoglycoside treatment into account as, after hospitalization, an 

employee could return to work with aminoglycoside-contaminated cochlea, which would 

make them particularly vulnerable to noise. An innocuous noise exposure can become 

noxious with aminoglycosides.20 Consequently, good communication between primary care 

and occupational physicians is required to avoid dangerous co-exposures to noise and 

aminoglycosides. Before their return to work, the company physician should examine 

anyone who has been hospitalized, or anyone who was treated with antibiotics to determine 

the nature of the drugs. Unfortunately, monitoring the serum aminoglycoside level is not 

sufficient to prevent a likely co-exposure since these antibiotics take longer to clear from the 

perilymph (inner-ear liquids) than from the blood. A safer approach would be to protect 

employees from an unexpected co-exposure to noise and aminoglycosides for at least 3 

months after the end of the treatment.

Mechanism of aminoglycoside ototoxicity—Aminoglycosides penetrate the outer 

hair cells from the endolymph. They do not cause lipid peroxidation by themselves; 

however, they form an aminoglycoside–iron complex that interacts with 

polyphosphoinositides. This reaction increases membrane permeability and generates the 
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release of reactive oxygen species (ROS) through the oxidation of arachidonic acid 

(breakdown products) in membranes. Superoxide, hydroxyl radical, and hydrogen peroxide 

then activate the c-Jun N-terminal kinase (JNK) pathway, which can translocate to the 

nucleus to activate genes involved in the cell death pathway. The products of these genes 

translocate to the mitochondria, where they induce the release of cytochrome c, which 

triggers apoptosis via caspases. Cell death may also result from caspase-independent 

mechanisms.21

Anti-neoplastic drugs—Platinum-derivates such as cisplatin and carboplatin are 

anticancer drugs that have ototoxic side effects.22–24 The ototoxicity induced by platinum-

derivates is characterized by the loss of cochlear hair cells and cells of the spiral ganglion 

and by degeneration of the stria vascularis.25 As with aminoglycosides, hearing impairment 

induced by platinum-derivates covers the range from high to low frequencies.26 An 

exacerbation of cisplatin ototoxicity was observed with exposure to concomitant moderate to 

high noise levels in chinchilla and guinea pigs.27,28

Loop diuretics—Ethacrynic acid, furosemide, and bumetanide are three loop diuretics 

widely used to increase the volume of urine excretion as part of the treatment for high blood 

pressure and swelling due to congestive heart failure. They act on the ascending limb of the 

loop of Henle, inhibiting sodium- and chloride-ion reabsorption in the kidney. In the mean 

time, diuretics act on the sodium- and potassium-transporters/pumps located within the stria 

vascularis, disturbing the ionic concentration of endolymph. Therefore, there is a parallel 

effect of diuretics on kidney and ear. Hearing loss is a temporary side effect that lasts only 

during the treatment. The effect is characterized by a sudden high-frequency hearing loss 

due to dysfunctions of the stria vascularis. These dysfunctions affect the ionic gradients 

between the endolymph and the perilymph, decreasing endocochlear potential and thereby 

sensorial transduction.29–31

Toxic interactions of loop diuretics and other known ototoxic drugs have been well 

documented, particularly with aminoglycosides. Dysfunctions at the level of the stria 

vascularis may result in a massive entry of aminoglycosides into the inner-ear fluid.32 Thus, 

the effect of loop diuretics on the stria vascularis facilitates the toxic effects of 

aminoglycosides on the hair cells. Similarly, ethacrynic acid is known to interact with 

cisplatin to increase its ototoxic effects.33 Finally, results from a study in rats showed that 

the ototoxic effect of cadmium may be potentiated by furosemide.34

Acetyl salicylic acid—High doses of acetyl salicylic acid (aspirin;>2.5 g/day) may 

induce a temporary auditory threshold shift and sometimes tinnitus.35,36 In general, recovery 

of normal auditory sensitivity occurs within 2 or 3 days of discontinuing salicylate 

administration. The exact mechanism of salicylate-induced hearing impairments remains 

incompletely known. The ototoxic effects seem to result from a combination of several 

reversible cochlear disturbances.37 Like aspirin, many other painkillers and antipyretics 

(quinine and chloroquine) are recognized for their potential ototoxic side effects. Salicylate-

induced temporary threshold shifts may exacerbate the temporary effects of noise, hamper 

speech discrimination, and increase difficulty in detecting an alarm sounding in a noisy 

environment.38,39
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Work-related substances

In many industries workers are exposed to both noise and chemicals, these include printing, 

painting, boat building, construction, glue manufacturing, metal products, chemicals, 

petroleum, leather products, furniture making, agriculture, and mining.1 In addition, some 

public safety workers, like firefighters, are also exposed to both noise and chemicals. 

Environmental exposure studies have determined the concentration of combustion products 

and various toxic agents in the smoke to which firefighters may be exposed.40–44 According 

to these studies, smoke contains numerous harmful chemicals such as acrolein, benzene, 

methylene chloride, polyaromatic hydrocarbons, perchloroethylene, carbon monoxide, 

toluene, trichloroethylene, trichlorophenol, xylene, and formaldehyde. In addition, 

combustion products include metals such as lead, cadmium, mercury, and arsenic. Common 

sources of these metals in structural and vehicle fires include lead (old paint and PVC), 

cadmium (batteries and PVC), mercury (thermostats, automotive switches and 

thermometers), and arsenic (pressure-treated wood).45,46 Many of the compounds detected 

in smoke from fires are also known to be neurotoxic or ototoxic.

Aromatic solvents

Toluene and styrene are the most widely and extensively used aromatic solvents in 

industry.47 Toluene is a major component of adhesives, paints, lacquers, varnishes, printing 

inks, degreasers, fuel additives, glues and thinners, whereas styrene is present when 

manufacturing plastics, rubber articles, and glass fibers.48

Chronic exposure to these aromatic solvents can affect the central nervous system49,50,11 

and also the inner ear.51,52 The cochleotoxic effects of aromatic solvents such as toluene, 

styrene, ethylbenzene, p-xylene, various methylstyrenes, allylbenzene, and n-propylbenzene 

have been repeatedly demonstrated in animal experiments.53–57 Long-duration exposures to 

aromatic solvents have been shown to cause irreversible hearing impairment, with the 

cochlear hair cells as the first targets.58,59 Most of these animal studies were performed with 

rats, whose cochleae are sensitive to aromatic solvents.60,61 Because of their similar 

metabolism, rats are considered comparatively good animal models for investigating the 

potential ototoxic properties of aromatic solvents in humans.62

Mechanisms of aromatic solvent ototoxicity—Aromatic solvents most likely affect 

hearing through chemical poisoning of hair cells, resulting in disorganization of their 

membranous structures.54 An acute effect may be caused by the direct action of solvents on 

the cells of the organ of Corti, whereas chronic ototoxic effects may be explained by the 

formation of chemically and biologically reactive intermediates. These intermediates include 

reactive oxygen species, which may trigger the death of these cells.63 They can also provoke 

dysfunctions of transmembrane K+ fluxes, which play a determining role in the physiology 

of hair cells during acoustic stimulation.64 During acoustic stimulation, K+ enters massively 

into the hair cells; efflux of this K+ from the hair cells into the outer tunnel of the organ of 

Corti increases the ionic level in the extracellular fluid. If this K+ is allowed to accumulate 

in the tunnel fluid, it would cause outer hair cell cytotoxicity. Clearly, K+ recycling from the 

organ of Corti back to the endolymph or to the stria vascularis plays an important role, 
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preventing an adverse local effect on the hair cells and allowing K+ ions to be saved.65 

Solvents transit from the outer sulcus into the organ of Corti, where they likely disrupt the 

role played by the Hensen and Tectal cells, thereby affecting K+ recycling.

Neuropharmacological effects of solvents—Nearly a century ago, volatile chemicals 

were thought to produce non-specific effects on the central nervous system (CNS). More 

recently, clear evidence has emerged regarding how inhaled solvents act specifically on 

several types of ion channels expressed in neurons.66 Many abused inhalants such as toluene 

may enhance inhibitory synaptic responses through their action on specific sites or through 

similar mechanisms of action to other CNS depressants, like anesthetics.67,68 For instance, 

N-methyl-D-aspartic acid,69 δ-aminobutyric acid, glycine,70 adenosyl triphosphate,71 

serotonin,72 and nicotinic acetylcholine receptors73 are all involved in CNS function and are 

sensitive to toluene. Recently, Lataye et al.74 and Maguin et al.75 showed that toluene could 

alter acetylcholine receptors and voltage-dependent Ca2+ channels function in in vivo 

studies. Consequently, toluene, like most aromatic solvents, can affect the middle-ear 

acoustic reflex (the contraction of the middle-ear muscles that occurs in response to high-

intensity sound stimuli). This reflex is driven by a cholinergic efferent system.76 This type 

of effect suggests that the hearing loss observed in solvent-exposed subjects might be due to 

dysfunctions beyond the peripheral auditory system, which could at least partially explain 

the synergistic effects of co-exposure to noise and aromatic solvents.

Co-exposure

What is the evidence from animal experiments?: Experiments with rats have shown that 

combined exposure to noise and solvents (such as toluene, styrene, and ethylbenzene) 

induces synergistic adverse effects on hearing.77–81 In most of these investigations, high 

concentrations of solvents were used for short intervals of time, conditions which do not 

accurately reflect occupational exposure conditions.

Another difficulty with recreating real-life conditions stems from the fact that humans are 

generally exposed to solvents in combination with a multitude of other factors (several 

exposures, physical demands, etc.); whereas animal experiments typically involve isolated 

solvent exposures. In studies with experimental animals, researchers have demonstrated that 

when other stressors are added (such as impact noise or carbon monoxide), or when the 

animals are active during the chemical exposure, the lowest concentration at which solvents 

elicited an auditory effect was reduced.79 Another complication in determining the 

concentration needed for hearing loss is that workers are often not aware of the 

concentration to which they are exposed, and many factors can interact to cause effect. 

However, cases of hearing loss have been observed after exposures that were within 

permissible European limits, these will be detailed in the next session.

Lataye et al.79 found interactive effects of noise and styrene with quite low levels of noise: 

A time-weighted average (TWA) of 85 dB and low concentration of styrene: 400 ppm, 6 h 

per day, 5 days per week for 4 weeks. In this investigation, solvent absorption was increased 

by forcing animals to walk in a special wheel during the exposure; as this reflects more 

closely human exposure scenarios where subjects are rarely stationary.
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Recently, it has been reported that some aromatic solvents reduce the protective role played 

by the middle-ear acoustic reflex.76 A dysfunction of this reflex would increase risks to 

hearing by allowing higher acoustic energy levels to penetrate the inner ear.75,82 This would 

make co-exposure more dangerous than exposure to noise or to styrene alone.

What is the evidence from epidemiological studies?: In general, clinical or 

epidemiological studies are designed to test hypotheses, such as the hypothesis that certain 

chemicals are ototoxic. Several clinical and epidemiological studies confirmed an 

association between exposure to solvents (styrene, toluene, xylenes, solvent mixtures, and 

jet fuels) in the workplace and increased prevalence of hearing loss, as well as poor hearing 

thresholds beyond the traditional 4 kHz noise-related audiometric notch.83–92 For an 

extensive review of human studies, see Johnson and Morata93 (available online at https://

gupea.ub.gu.se/handle/2077/23240).

To examine dose–response relationships, large populations and detailed exposure 

information would be needed, which can be very challenging to obtain. Thus, the limitations 

of existing studies (e.g., study designs, insufficient characterization of the exposure levels 

for chemicals and noise, and lack of details on whether and how other risk factors were 

accounted for) do not allow us to identify the following: (1) the type of interaction between 

the agents and how their results can be used to estimate dose–response relationships or (2) 

the lowest concentrations necessary for an effect to be detected for the solvents covered in 

the present document. Overall, studies conducted with experimental animals provide the 

most robust evidence regarding mechanisms and dose–effect relationships between agents 

and effects on the auditory function or physiology.

Given the difficulties of extrapolating animal findings and analyzing the data obtained from 

human studies, those in charge of prevention policy must consider both experimental and 

epidemiological studies.

The approaches adopted in different countries have been described in two recent reviews.5,93 

Overall, with combined exposure to noise and organic solvents, interactive effects may be 

observed depending on the parameters of noise (intensity and impulsiveness) and the 

solvent-exposure concentrations. In case of concomitant exposures, solvents can exacerbate 

noise-induced impairments even with a noise intensity below the European permissible limit 

value.

From a mechanistic point of view, solvent-induced hearing impairment in humans would 

suggest the involvement of both the inner ear and the central nervous system.

Non-aromatic solvents

What do animal experiments show?

Trichloroethylene is a cleaning and degreasing agent that can also be used for extractions in 

different chemical processes. Exposure to high concentrations of trichloroethylene has been 

shown to disrupt cochlear sensory hair and spiral ganglion cells as well the auditory nerve 

pathways within the cochlea.94–98
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In contrast, carbon disulfide (used as a solvent for lipids, sulfur, rubber, phosphorus, oils, 

resins and waxes), as well as n-hexane (used as a cleaning agent for textiles, furniture, and 

leather) have been shown to affect the auditory nervous pathway beyond the cochlea in 

animals99–103; for review see Vyskocil et al.104 These two solvents are associated with 

retrocochlear dysfunctions.

Nitriles

Nitriles are mainly used for the preparative synthesis of carboxylic acids. However, 

acetonitrile is used as a solvent, benzonitrile as an initial compound for melamine resins, and 

acrylonitrile as a monomer for polyacrylonitrile. The ototoxic effects of these compounds 

have been demonstrated in animal experiments only. Cis-2-pentenenitrile, 3-butenenitrile, 

cis-crotononitrile, and 3,3′-iminodipropionitrile were shown to cause cochlear hair cell 

losses and spiral ganglion cell losses, respectively, in rats, mice, guinea pigs, and 

frogs.13,105,53 In contrast, acute exposure to acrylonitrile in rats produces a transient 

reduction in auditory sensitivity in the high-frequency range.106

After administration of acrylonitrile, noise-induced hearing impairment was significantly 

potentiated in rats.106 Under test conditions in which neither acrylonitrile nor noise 

exposures caused any permanent hearing loss, combined exposure caused permanent hearing 

impairment and significant losses of the outer hair cells. Thus, hearing loss may occur at low 

noise intensities if simultaneous exposure to acrylonitrile occurs. Pouyatos et al.107 

hypothesized that acrylonitrile increases the risk of noise-induced oxidative damage to the 

inner ear by impairing the antioxidant’s defense mechanisms of the cells.

Asphyxiants

Carbon monoxide and hydrogen cyanide (salts: cyanides) are two well-known ototoxic 

asphyxiants. The first is found in exhaust fumes when combustion processes are incomplete 

in motor vehicles, poorly ventilated stoves and furnaces, acetylene welding, or in enclosed 

areas (mines and tunnels). Hydrogen cyanide is used as an intermediate product in the 

organic synthesis of carboxylic acids, pharmaceuticals, dyes and pesticides; relatively large 

quantities are also required for the surface treatment of metals, galvanizing, and the cyanide 

leaching process.

What do animal experiments show?—The ototoxicity of asphyxiants is believed to be 

a consequence of effective oxygen deprivation (hypoxia) within the cochlea. In animal 

experiments, exposure to carbon monoxide or cyanide has reversible auditory effects at low 

concentrations and impairs cochlear function under severe exposure conditions.108–110 

These experimental studies showed that the two asphyxiants predominantly affect hearing 

for high-frequency tones, and suggested that while cyanides induce dysfunction of the stria 

vascularis,110 carbon monoxide produces excessive glutamate release (glutamatergic 

excitotoxicity) in the synaptic area below the inner hair cells.111

Both carbon monoxide and cyanides have been found to potentiate permanent noise-induced 

hearing loss in animals and humans.106,112–118 This potentiation may be the result of a 
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reduction in the cell’s ability to repair noise-induced damage due to carbon monoxide 

poisoning.112,113

What do epidemiological studies show?—In a large epidemiological investigation 

conducted by Lacerda et al.,118 the hearing thresholds of employees working in noisy 

occupational environments with combined carbon monoxide exposures were compared with 

the hearing thresholds of employees working in noisy occupational environments without 

carbon monoxide. The analysis was based on 9396 audiograms collected by the Quebec 

National Public Health Institute between 1983 and 1996. The results showed significantly 

higher hearing thresholds at high frequencies (3, 4 and 6 kHz) for the carbon monoxide-

exposed group, with more pronounced effects observed as the duration of exposure 

increased (15–20 years of exposure).

For an extensive review of human studies with carbon monoxide using other designs, see 

Johnson and Morata.93 Even though further human studies are needed to clarify these 

findings, noise-induced hearing impairment also appears to be potentiated by carbon 

monoxide in humans.

Tobacco smoke—Although a few studies have found no association between smoking 

and hearing impairment,119,120 numerous epidemiological studies suggest a link.121–126 

Tobacco smoke contains hydrogen cyanide among other compounds, and results from 

epidemiological investigations indicate that smokers may have an increased risk of noise-

induced hearing impairment.121,127

Metals and metal compounds

Lead and mercury—Lead and mercury are metal compounds that are known to be 

neurotoxic, and therefore ototoxic.128,129 Lead and lead compounds can be found in the 

manufacture of lead–acid batteries and plastic, in ship breaking, in paint and petrol. Lead 

may also be present during car radiator repair, welding, plumbing, smelting, refining, and 

mining. Mercury can be found in the chlorine–alkali (chloralkali) industry; the industrial 

process is performed in mercury cells in which mercury acts as the cathode to produce 

chlorine and sodium hydroxide. Like lead, mercury compounds may be used in batteries 

(mercuric oxide) and found in pigments, catalysts, explosives (mercury fulminate), 

laboratory-based research, and in some pharmaceutical applications.

Several studies carried out with monkeys exposed long-term to lead, and epidemiological 

studies on lead-exposed workers suggest that lead has an ototoxic effect caused by a 

neurotoxic mechanism.130–134 Similarly, mercury compounds were shown to induce 

hearing-damaging effects both in laboratory animals (methyl mercury chloride and mercuric 

sulfide) and humans.135–138

A few studies did not confirm the effect of these metals on hearing,139,140 but, given the 

current evidence from human studies, lead and mercury do appear to be ototoxic.

Tin and organic compounds—Tri-n-alkyltins are phytotoxic agents used as powerful 

bactericides and fungicides. Trimethyltin and triethyltin induce hearing impairments in both 
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rats and guinea pigs, the severity of which is dose-dependent.141–145 Acute limbic-cerebellar 

syndrome, which includes hearing impairment and involuntary eye movements (nystagmus), 

was detected in six industrial workers who inhaled trimethyltin.146

Germanium and manganese—Germanium and manganese are found in the 

manufacture of steel alloys, dry-cell batteries, electrical coils, ceramics, matches, glass, 

dyes, in fertilizers, welding rods, as oxidizing agents, and as animal food additives.

The administration per os of germanium dioxide (100 mg/kg/day for 4 weeks and 0.5% in 

food for 2 months) provoked hearing impairment in rats and guinea pigs due to degeneration 

of the stria vascularis and the cochlear supporting cells.147 Other authors assessed alterations 

of brainstem transmissions in similar tests.148

Nikolov149 reported in 1974 that the potential ototoxicity of manganese may be exacerbated 

by exposure to noise, and that workers exposed to both manganese and noise seemed to have 

accelerated hearing impairment compared with those exposed to manganese alone.

Halogenated hydrocarbons

Finally, there is a strong suspicion for an ototoxic potential of cadmium and arsenic 

compounds, as well as halogenated hydrocarbons [polychlorinated biphenyls (PCB), 

tetrabromobisphenol A, hexabromocyclododecane and hexachlorobenzene].150–152 Animal 

data suggest that halogenated hydrocarbon-induced hearing impairments are the sequelae of 

thyroid gland disorders caused by some of these substances.153,154 In addition, Powers et 

al.155 proposed in 2006 that polychlorinated biphenyls could have a direct adverse effect on 

the outer hair cell function.

Chemical intoxication and presbycusis

Presbycusis refers to a constellation of age-related physiological degenerations, causing a 

bilateral loss of hearing sensitivity ranging from high to low audiometric frequencies and a 

decreased ability to understand speech, particularly in the presence of background 

noise.156–158 From a histopathological point of view, four predominant types of presbycusis 

can be identified159:

• Sensory presbycusis, which refers to the loss of sensory hair cells and supporting 

cells in the cochlea.

• Neural presbycusis, which refers to degeneration of nerve fibers (Fig. 2) in the 

cochlea and central neural pathways. A large decrease occurs in the density of 

spiral ganglion cells and afferent fibers, especially evident in the apical turn of the 

spiral ganglion (Fig. 6, bottom panels).

• Strial presbycusis, which results from degeneration of the stria vascularis in the 

cochlea. Strial presbycusis is characterized by vascular stenosis and reduced 

vascularization.

• Mechanical presbycusis, which results from morphological changes of the basilar 

membrane of the cochlea.
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At younger ages (<50 years), the first effects of presbycusis are normally concealed by 

central counterbalancing mechanisms. Indeed, after an acoustic trauma or an ototoxic 

intoxication, the central nervous system can increase the spontaneous firing rate of neurons 

in the dorsal cochlear nucleus160,161 or decrease gabanergic inhibition in the inferior 

colliculus.162,163 This neural hyperactivity maintains a suitable level of excitability of the 

auditory nerve cells: the phenomena are called “up-regulation” in the dorsal cochlear 

nucleus and “down-regulation” in the inferior colliculus. In addition to these up- and down-

regulations within the auditory central nuclei, younger subjects have more cochlear hair cells 

than necessary for assuring normal hearing. As a result, a limited loss of hair cells can be 

sustained without leading to significant hearing deficits.164 For all these reasons, the effects 

of ototoxic substances in an exposed population cannot be fully determined by pure-tone 

audiology (PTA) alone.

What are the consequences of trauma or poisoning on the first manifestations of 
presbycusis?

Noise exposure (even at moderate intensity) or chemical intoxication can exacerbate age-

related hearing loss and lead to early presbycusis, due to exhaustion of the compensatory 

strategies developed by the different features of the hearing system.165 Like noise, the 

effects of ototoxic agents are insidious and hard to correlate with the duration of exposure. 

Hearing damage is generally identified after several years of exposure when it is too late to 

take preventive action. An early diagnosis of presbycusis is definitely an admission of 

failure. Preventive action must be taken when it is still possible to preserve workers’ 

hearing. As a result, we believe PTA is not the appropriate test to use for auditory follow-up 

when people are exposed to noise or ototoxic agents.

Although many people experience a decrease in hearing acuity with age, others do not, and 

it is not possible to predict who will and who will not develop hearing loss as they get older. 

The median hearing loss attributable to aging for a given age group cannot be generalized to 

all individuals in that age group. Thus, when calculating significant threshold shifts, age-

correcting hearing thresholds will overestimate the expected hearing loss for some people 

and underestimate it for others.

The adjustment of audiometric thresholds to account for age-related effects has become a 

common practice in workers’ compensation litigation. The age-correction of audiograms 

measured as part of an occupational hearing loss prevention program is not 

recommended.166

Patient evaluation, diagnosis, prevention and treatment

Today, few health care providers inquire about hearing loss. In fact, among older adults, 60 

years of age and older, only 15% of the primary care providers asked or screened patients 

for hearing loss.167 If hearing loss is rarely addressed among older adults, for whom many 

providers would expect hearing loss to be an issue, even fewer clinicians are likely to 

inquire about hearing loss and tinnitus among middle-aged persons who are exposed to 

ototoxic substance and/or loud noise in the work or home environment (hearing risks are not 

confined solely to workplace noise or chemical exposures). Each case history should 
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investigate risk factors in all aspects of the subject’s daily activities, including occupational 

and nonoccupational tasks, and be followed by appropriate referral and/or counseling. In 

addition, if hearing is found to be impaired (regardless of etiology), this should not dissuade 

the physician from encouraging the patient to protect their residual hearing. Each 

consultation offers a chance for education that should not be wasted. Subjects who are at 

risk of hearing loss and tinnitus due to exposure to ototoxic substances and noise need to be 

fully informed about the risks they run and the protection strategies that can be 

implemented. They must assume responsibility for using personal protective equipment, and 

develop the habit of using it whenever they are exposed to loud noise (both on and off the 

job). Thus it is important for health professionals to make a point of seeking out risks to 

patients’ hearing and advising them appropriately. Many resources are available to help 

guide counseling activities, including online materials from professional organizations, 

advocacy groups, government agencies, and vendors of hearing-related health products. 

However, as the accuracy of information varies greatly among online resources a critical 

review should be undertaken before using the information.

Evaluation and diagnosis

Dysfunctions of the central auditory nervous system following occupational exposures have 

been described on the basis of results from behavioral tests, despite some studies reporting 

normal hearing thresholds.168–173 This suggests that hearing loss caused by chemicals can 

affect a worker’s life more extensively than noise-induced hearing loss, because sounds are 

perceived not only as less loud, but also as distorted. Word recognition may also be 

compromised.

While pure-tone air-conduction audiometry (PTA) remains the most commonly used clinical 

test both in the United States and Europe to measure the extent of temporary and permanent 

hearing loss, it has been shown to be insufficient for examining hearing loss from mixed 

exposure to noise and ototoxic agents, because it does not allow the source of the problem to 

be diagnosed (i.e., cochlear vs. retrocochlear). In the case of central hearing loss, a PTA can 

indicate normal hearing, but a person can still have difficulty understanding speech, 

particularly in background noise, making it difficult to hold a conversation in a busy 

restaurant or at a party. Thus, for persons exposed to ototoxic chemicals in isolation or in 

combination with noise it is important to use tests that evaluate the auditory system more 

comprehensively, from the cochlea to the higher auditory pathways. These tests may help 

differentiate between the individual (or the combined) effects of noise and ototoxicants on 

hearing.

As a result, PTA should be complemented with supplementary prevention tools such as 

distortion product otoacoustic emissions (DPOAEs). Cubic DPOAEs detect inner-ear 

dysfunctions only, particularly those involving the outer hair cells sensitive to noise and 

ototoxicants. The inclusion of DPOAEs in a battery of tests to assess hearing would 

facilitate the distinction between sensory and neural hearing disorders. By combining 

DPOAE measurements with contra-lateral acoustic stimulation, the stapedial reflex can also 

be measured. This is important as ototoxicants were recently shown to affect the central 

nuclei driving the middle-ear acoustic reflex.76,82 Therefore, from a safety point of view, it 
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would be more efficient to collect and measure performances both in the middle ear and in 

the inner ear. The acoustic reflex would allow chemically induced retrocochlear disorders to 

be evaluated. Equipment is being designed to offer an alternative to subjective PTA to detect 

early-stage hearing impairment. One example is the EchoScan, which can provide sensitive, 

objective, quick, and reliable measurements of both inner- and middle-ear performances, 

taking both the age and gender of subjects into account.174 This system does not require 

stringent acoustic conditions (it does not have to be carried out in a sound-proof booth, it can 

be carried out in a quiet room), making it very convenient for use in the workplace. It is 

therefore suitable for occupational medicine, especially for the auditory follow-up of people 

exposed to noise and/or ototoxic agents. The major advantage of EchoScan is that it 

facilitates detection of the middle-ear reflex, which is quite sensitive to the 

neuropharmacological effects of some ototoxic substances. As a result, EchoScan can assess 

both the inner-ear (amplitude of the distortion products) and the middle-ear reflex at the end 

of a working day. Fifteen minutes before and after the exposure are enough to go through all 

the tests and to obtain an idea of the cochlear and retrocochlear effects of suspected 

substances. This system is quite promising for early detection of effects in hearing 

conservation programs.

Although ideal, we acknowledge that the routine use of an extensive battery of audiological 

tests in primary care settings may be prohibitive because of time and cost constraints. In the 

face of such constraints, the selection of a minimum battery of tests with proven validity and 

reliability, as well as availability and ease of administration, becomes crucial for planning a 

protocol for routine evaluation.

Prevention

While hearing loss is one of the principal work-related disabilities among various groups of 

workers, a considerable number of losses could be prevented if exposure to known oto-toxic 

chemicals, alone or in combination with even mild to moderate noise, was included in risk 

assessment and management. The initial steps of hearing loss prevention programs are 

hazard assessment and control. It is important to learn whether and which hazardous 

exposures exist in a workplace. Whenever hazardous noise or chemicals exist in the 

workplace, measures to reduce exposure levels to protect exposed workers and to monitor 

the effectiveness of these interventions are required by law. The most effective way to 

prevent hearing loss due to noise or chemical exposure is to remove the source of risk from 

the workplace by engineering controls, finding alternatives to minimize exposure (such as 

reducing the duration of exposure), or requiring the use of personal protective equipment if 

engineering or administrative controls do not eliminate exposure. If the use of personal 

protective equipment is required, it should be worn as directed. Many professional 

organizations and government agencies have comprehensive sources of information to help 

guide your counseling activities.

Conclusions

Evidence of how hearing dysfunctions can be caused by chemicals and the combined effects 

of co-exposures to noise and ototoxic chemicals have emerged predominantly from animal 
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tests in which these associations have been demonstrated. Animal studies have been used to 

assess the specific effects of several substances to be studied in controlled and appropriate 

experimental conditions. These findings are supported by cross-sectional epidemiological 

studies in workers from different industrial sectors exposed to styrene, toluene, solvent 

mixtures, carbon disulfide, or to a combination of noise and solvents such as toluene, 

styrene, and ethylbenzene. The risks encountered by workers exposed to chemicals or to 

chemicals and noise are real, and data obtained from animal models must not be neglected. 

Today, our scientific knowledge is robust enough to recommend at least precautionary 

measures for use in occupational environments where workers are exposed to chemicals.

Recommendations

Recognizing the risk of occupational chemical exposure on hearing, the European noise 

legislation (Directive 2003/10 EC noise)175 as well as the U.S. Army Hearing Conservation 

guidelines already included ototoxic chemical exposure as a risk factor to be considered in 

risk assessment and prevention strategies for hearing. The U.S. Army Center for Health 

Promotion and Preventive Medicine176 also issued a recommendation to consider ototoxic 

chemical exposures for inclusion in a hearing conservation program and to provide annual 

audiograms for workers exposed to these chemicals, particularly in combination with 

marginal noise. The American College of Occupational and Environmental Medicine 

(ACOEM) guidance statement also indicates that exposure to ototoxicants should be 

considered when health professionals evaluate sensorineural hearing loss (ACOEM, 

2012).177

The American Conference of Governmental Industrial Hygienists (ACGIH) stated in its 

Threshold Limited Values® and Biological Exposure Indices® publications that periodic 

audiograms are advised and should be carefully reviewed in occupational settings where 

exposure to toluene, lead, manganese, or n-butyl alcohol occurs.178 But none of these 

require clear hearing controls following exposure to ototoxic substances or to co-exposures 

with noise. In fact, no regulations require workers’ hearing to be monitored when they are 

exposed to ototoxic chemicals. Tests for ototoxicity should be standardized and incorporated 

into national, or even international guidelines. More frequent medical monitoring should be 

considered for workers exposed to ototoxic substances, irrespective of the noise exposure 

level, and workers’ health results should be recorded to allow early changes at individual 

and collective levels to be detected.

The audiological control of workers exposed to noise, chemicals, or both should go further 

than PTA or DPOAE measurements to take the main dimensions of hearing impairments 

into consideration. An assessment of the loss of communication skills, a middle-ear test (a 

quick measure of the stapedial reflex), and questionnaires on therapeutic treatments or 

exposure to chemicals should be included in the battery of audiological tests used to allow 

early detection and correctly evaluate the total effects on workers hearing. This battery of 

tests could also be used as an early indicator of neurotoxicity and would be helpful to 

evaluate the toxicity of industrial chemicals and establish occupational exposure limits.
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Ideally, after hospitalization and before returning to work, employees should be interviewed 

by an occupational physician and potentially ototoxic drugs administered as part of the 

treatment should be listed. Because the precautionary principle of the EU Commission 

requires an adequate level of protection even when scientific data are insufficient or 

ambiguous, individual hearing protectors are recommended for at least 3 months post-

treatment for exposures of 80 dBA and above (time-weighted average) in a complex 

occupational environment (noise plus chemical ototoxic substances). (The precautionary 

principle is based on evidence that is graded as fair and information from one or two studies 

that are judged to be reliable.) A special label for ototoxic substances may be considered for 

chemicals.

For too long, hearing loss prevention has been viewed as a specialized area for a few 

professionals who manage occupational hearing conservation programs. Hearing loss due to 

work-related exposure represents a substantial portion of all hearing impairments. Because 

most work-related hearing losses are permanent, the only way to reduce their burden on 

society is to prevent them. Without intervention, the financial and social costs of hearing 

loss also become significant. Physicians have the tools and the opportunity and are in a 

strategic position to advocate for healthy hearing practices and to facilitate hearing loss 

prevention. The public health nature of work-related hearing loss and the magnitude of the 

problem in today’s society require their increased involvement.
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Fig. 1. 
Cross section of the cochlea. mb, membrane. Left bottom panel: organ of Corti. (Color 

version of the figure is available online.)
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Fig. 2. 
Mechanisms of aminoglycoside-induced outer hair cell damage. AG, aminoglycoside; AG–

Fe, aminoglycoside– iron complex; ROS, reactive oxygen species; JNK, c-Jun N-terminal 

kinase; Cyt C, cytochrome C. Adapted from Rybak and Ramkumar.21
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Fig. 3. 
Mechanisms of anticancer drug toxicity. CP, cisplatin; MHC, monohydrate complex; ROS, 

reactive oxygen species; NOX-3, NADPH oxidase 3; Cyt C, cytochrome C. Adapted from 

Rybak and Ramkumar.21
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Fig. 4. 
Intoxication route for different medicines and work-related substances. (A) Anti-neoplastic 

drugs and aminoglycosides are hydrophilic substances, whereas solvents are lipophilic 

substances. (B) Loop diuretics modify the activity of the ionic pumps, whereas aspirin 

affects blood fluidity within the stria vascularis. As a result, the ionic concentration of 

endolymph is disturbed until the molecules are cleared from the system. (Color version of 

the figure is available online.)
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Fig. 5. 
Scanning electron micrograph of a rat organ of Corti prior to- (A) and post- (B) toluene 

exposure. When present, the stereocilia of the hair cells look normal in both images.
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Fig. 6. 
Neural presbycusis. Mid-modular cut cochlea. The left panels correspond to a 25-month-old 

rat, whereas the right panels correspond to a 5-month-old rat. (Color version of the figure is 

available online.)
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